Домой Животные Кто доказал теорему. Великая теорема ферма

Кто доказал теорему. Великая теорема ферма

1

Ивлиев Ю.А.

Статья посвящена описанию принципиальной математической ошибки, допущенной в процессе доказательства Великой теоремы Ферма в конце ХХ века. Обнаруженная ошибка не только искажает истинный смысл теоремы, но и препятствует развитию нового аксиоматического подхода к исследованию степеней чисел и натурального ряда чисел.

В 1995 году вышла статья , по размеру похожая на книгу и сообщавшая о доказательстве знаменитой Великой (Последней) теоремы Ферма (ВТФ) (об истории теоремы и попытках ее доказать см., например, ). После этого события появилось множество научных статей и научно-популярных книг, пропагандирующих это доказательство, однако ни в одном из этих трудов не была вскрыта принципиальная математическая ошибка в нем, вкравшаяся даже не по вине автора , а по какому-то странному оптимизму, охватившему умы математиков, занимавшихся указанной проблемой и смежными с ней вопросами. Психологические аспекты этого феномена были исследованы в . Здесь же дается детальный анализ произошедшей оплошности, которая носит не частный характер, а является следствием неправильного понимания свойств степеней целых чисел. Как показано в , проблема Ферма коренится в новом аксиоматическом подходе к изучению этих свойств, который до сих пор в современной науке не применялся. Но на его пути встало ошибочное доказательство , предоставившее специалистам по теории чисел ложные ориентиры и уводящее исследователей проблемы Ферма в сторону от ее прямого и адекватного решения. Данная работа посвящена устранению этого препятствия.

1. Анатомия ошибки, допущенной в ходе доказательства ВТФ

В процессе очень длинных и утомительных рассуждений первоначальное утверждение Ферма было переформулировано в терминах сопоставления диофантова уравнения p -ой степени с эллиптическими кривыми 3-его порядка (см. Теоремы 0.4 и 0.5 в ). Такое сопоставление заставило авторов фактически коллективного доказательства в объявить о том, что их метод и рассуждения приводят к окончательному решению проблемы Ферма (напомним, что ВТФ не имела признанных доказательств для случая произвольных целых степеней целых чисел вплоть до 90-х годов прошлого столетия). Целью данного рассмотрения является установление математической некорректности указанного выше сопоставления и, как результат проведенного анализа, нахождение принципиальной ошибки в доказательстве, предъявленном в .

а) Где и в чем ошибка?

Итак, будем идти по тексту , где на с.448 говорится, что после «остроумной идеи» Г.Фрея (G.Frey) открылась возможность доказательства ВТФ. В 1984 году Г.Фрей предположил и

К.Рибет (K.Ribet) позднее доказал, что предполагаемая эллиптическая кривая, представляющая гипотетическое целое решение уравнения Ферма,

y 2 = x(x + u p)(x - v p) (1)

не может быть модулярной. Однако А.Уайлс (A.Wiles) и Р.Тейлор (R.Taylor) доказали, что всякая полустабильная эллиптическая кривая, определенная над полем рациональных чисел, является модулярной. Отсюда следовал вывод о невозможности целочисленных решений уравнения Ферма и, следовательно, о справедливости утверждения Ферма, которое в обозначениях А.Уайлса записывалось как Теорема 0.5: пусть имеется равенство

u p + v p + w p = 0 (2)

где u, v , w - рациональные числа, целый показатель p ≥ 3; тогда (2) выполняется, только если uvw = 0 .

Теперь, по-видимому, следует вернуться назад и критически осмыслить, почему кривая (1) была априори воспринята как эллиптическая и какова ее реальная связь с уравнением Ферма. Предвидя этот вопрос, А.Уайлс ссылается на работу И.Эллегуарша (Y.Hellegouarch) , в которой тот нашел способ сопоставить уравнению Ферма (предположительно решаемому в целых числах) гипотетическую кривую 3-его порядка. В отличие от Г.Фрея И.Эллегуарш не связывал свою кривую с модулярными формами, однако его метод получения уравнения (1) был использован для дальнейшего продвижения доказательства А.Уайлса.

Остановимся подробнее на работе . Свои рассуждения автор проводит в терминах проективной геометрии. Упрощая некоторые его обозначения и приводя их в соответствие с , находим, что абелевой кривой

Y 2 = X(X - β p)(X + γ p) (3)

сопоставляется диофантово уравнение

x p + y p + z p = 0 (4)

где x , y, z - неизвестные целые числа, p - целый показатель из (2), а решения диофантова уравнения (4) α p , β p , γ p используются для записи абелевой кривой (3).

Теперь, чтобы удостовериться в том, что это кривая эллиптическая 3-его порядка, необходимо рассмотреть переменные X и Y в (3) на евклидовой плоскости. Для этого воспользуемся известным правилом арифметики эллиптических кривых: если имеются две рациональные точки на кубической алгебраической кривой и прямая, проходящая через эти точки, пересекает эту кривую еще в одной точке, то последняя также является рациональной точкой. Гипотетическое уравнение (4) формально представляет собой закон сложения точек на прямой. Если сделать замену переменных x p = A, y p = B, z p = C и направить полученную таким образом прямую по оси X в (3), то она пересечет кривую 3-ей степени в трех точках: (X = 0, Y = 0), (X = β p , Y = 0), (X = - γ p , Y = 0), что и отражено в записи абелевой кривой (3) и в аналогичной записи (1). Однако, является ли кривая (3) или (1) на самом деле эллиптической? Очевидно, что нет, потому что отрезки евклидовой прямой при сложении точек на ней взяты в нелинейном масштабе.

Возвращаясь к линейным координатным системам евклидова пространства, получаем вместо (1) и (3) формулы, весьма отличные от формул для эллиптических кривых. Например, (1) может быть следующей формой:

η 2p = ξ p (ξ p + u p)(ξ p - v p) (5)

где ξ p = x, η p = y, и апелляция к (1) в таком случае для вывода ВТФ представляется неправомерной. Несмотря на то, что (1) удовлетворяет некоторым критериям класса эллиптических кривых, все же самому главному критерию быть уравнением 3-ей степени в линейной системе координат оно не удовлетворяет.

б) Классификация ошибки

Итак, еще раз вернемся к началу рассмотрения и проследим, как делается в вывод об истинности ВТФ. Во-первых, предполагается, что существует некое решение уравнения Ферма в положительных целых числах. Во-вторых, это решение произвольно вставляется в алгебраическую форму известного вида (плоскую кривую 3-ей степени) в предположении, что полученные таким образом эллиптические кривые существуют (второе неподтвержденное предположение). В-третьих, поскольку другими методами доказывается, что построенная конкретная кривая немодулярна, то, значит, она не существует. Отсюда следует заключение: целочисленного решения уравнения Ферма нет и, следовательно, ВТФ верна.

В этих рассуждениях есть одно слабое звено, которое после детальной проверки оказывается ошибкой. Эта ошибка совершается на втором этапе процесса доказательства, когда предполагается, что гипотетическое решение уравнения Ферма является одновременно и решением алгебраического уравнения 3-ей степени, описывающего эллиптическую кривую известного вида. Само по себе такое предположение было бы оправданным, если бы указанная кривая действительно являлась эллиптической. Однако, как видно из п.1а), эта кривая представлена в нелинейных координатах, что делает ее «иллюзорной», т.е. реально не существующей в линейном топологическом пространстве.

Теперь надо четко классифицировать найденную ошибку. Она заключается в том, что в качестве аргумента доказательства приводится то, что нужно доказать. В классической логике эта ошибка известна как «порочный круг». В данном случае целочисленное решение уравнения Ферма сопоставляется (по-видимому, предположительно однозначно) с фиктивной, несуществующей эллиптической кривой, а потом весь пафос дальнейших рассуждений уходит на то, чтобы доказать, что конкретная эллиптическая кривая такого вида, полученная из гипотетических решений уравнения Ферма, не существует.

Как же так получилось, что в серьезной математической работе была пропущена столь элементарная ошибка? Наверно, это произошло из-за того, что ранее в математике не изучались «иллюзорные» геометрические фигуры указанного вида. Действительно, кого могла заинтересовать, например, фиктивная окружность, полученная из уравнения Ферма заменой переменных x n/2 = A, y n/2 = B, z n/2 = C ? Ведь ее уравнение C 2 = A 2 + B 2 не имеет целочисленных решений при целых x, y, z и n ≥ 3 . В нелинейных координатных осях X и Y такая окружность описывалась бы уравнением, по внешнему виду очень похожему на стандартную форму:

Y 2 = - (X - A)(X + B),

где A и B уже не переменные, а конкретные числа, определяемые указанной выше заменой. Но если числам A и B придать первоначальный вид, заключающийся в их степенном характере, то сразу же бросается в глаза неоднородность обозначений в сомножителях правой части уравнения. Этот признак помогает отличить иллюзию от действительности и перейти от нелинейных координат к линейным. С другой стороны, если рассматривать числа как операторы при их сравнении с переменными, как например в (1), то те и другие должны быть однородными величинами, т.е. должны иметь одинаковые степени.

Такое понимание степеней чисел как операторов позволяет также увидеть, что сопоставление уравнения Ферма иллюзорной эллиптической кривой не является однозначным. Возьмем, к примеру, один из сомножителей в правой части (5) и разложим его на p линейных сомножителей, введя такое комплексное число r, что r p = 1 (см. например ):

ξ p + u p = (ξ + u )(ξ + ru )(ξ + r 2 u )...(ξ + r p-1 u ) (6)

Тогда форму (5) можно представить в виде разложения на простые сомножители комплексных чисел по типу алгебраического тождества (6), однако единственность такого разложения в общем случае стоит под вопросом, что и было в свое время показано Куммером .

2. Выводы

Из предыдущего анализа следует, что так называемая арифметика эллиптических кривых не способна пролить свет на то, где надо искать доказательство ВТФ. После работы утверждение Ферма, кстати, взятое эпиграфом к этой статье, стало восприниматься, как историческая шутка или розыгрыш. Однако на деле оказывается, что пошутил не Ферма, а специалисты, собравшиеся на математический симпозиум в Обервольфахе в Германии в 1984 году, на котором Г.Фрей озвучил свою остроумную идею. Последствия такого неосторожного заявления привели математику в целом на грань утраты ею общественного доверия, что подробно описано в и что с необходимостью ставит перед наукой вопрос об ответственности научных учреждений перед обществом. Сопоставление уравнения Ферма кривой Фрея (1) является «замкóм» всего доказательства Уайлса относительно теоремы Ферма, и, если нет соответствия между кривой Ферма и модулярными эллиптическими кривыми, то значит нет и доказательства.

В последнее время появляются различные интернет-сообщения о том, будто бы некоторые видные математики, наконец-то, разобрались с доказательством Уайлса теоремы Ферма, придумав ему оправдание в виде «минимального» пересчета целых точек в евклидовом пространстве. Однако никакие новшества не в силах отменить классические результаты, уже добытые человечеством в математике, в частности, тот факт, что хотя любое порядковое число и совпадает с его количественным аналогом, оно не может быть ему заменой в операциях сравнения чисел между собой, а отсюда с неизбежностью следует вывод, что кривая Фрея (1) не является эллиптической изначально, т.е. не является ею по определению.

СПИСОК ЛИТЕРАТУРЫ:

  1. Ивлиев Ю.А. Реконструкция нативного доказательства Великой теоремы Ферма - Объединенный научный журнал (раздел «Математика»). Апрель 2006 № 7 (167) с.3-9, см. также Працi Луганського вiддiлення Мiжнародноϊ Академiϊ iнформатизацiϊ. Мiнiстерство освiти та науки Украϊни. Схiдноукраϊнський нацiональний унiверситет iм. В.Даля. 2006 № 2 (13) с.19-25.
  2. Ивлиев Ю.А. Величайшая научная афера ХХ века: «доказательство» Последней теоремы Ферма - Естественные и технические науки (раздел «История и методология математики»). Август 2007 № 4 (30) с.34-48.
  3. Эдвардс Г. (Edwards H.M.) Последняя теорема Ферма. Генетическое введение в алгебраическую теорию чисел. Пер. с англ. под ред. Б.Ф.Скубенко. М.: Мир 1980, 484 с.
  4. Hellegouarch Y. Points d´ordre 2p h sur les courbes elliptiques - Acta Arithmetica. 1975 XXVI p.253-263.
  5. Wiles A. Modular elliptic curves and Fermat´s Last Theorem - Annals of Mathematics. May 1995 v.141 Second series № 3 p.443-551.

Библиографическая ссылка

Ивлиев Ю.А. ОШИБОЧНОЕ ДОКАЗАТЕЛЬСТВО УАЙЛСА ВЕЛИКОЙ ТЕОРЕМЫ ФЕРМА // Фундаментальные исследования. – 2008. – № 3. – С. 13-16;
URL: http://fundamental-research.ru/ru/article/view?id=2763 (дата обращения: 25.09.2019). Предлагаем вашему вниманию журналы, издающиеся в издательстве «Академия Естествознания»

Поскольку мало кто владеет математическим мышлением, то я расскажу о наикрупнейшем научном открытии – элементарном доказательстве Великой теоремы Ферма – на самом понятном, школьном, языке.

Доказательство было найдено для частного случая (для простой степени n>2), к которому (и к случаю n=4) легко сводятся и все случаи с составным n.

Итак, нужно доказать, что уравнение A^n=C^n-B^n решения в целых числах не имеет. (Здесь значок ^ означает степень.)

Доказательство проводится в системе счисления с простым основанием n. В этом случае в каждой таблице умножения последние цифры не повторяются. В обычной, десятичой системе, ситуация иная. Например, при умножении числа 2 и на 1, и на 6 оба произведения – 2 и 12 – оканчиваются на одинаковые цифры (2). А, например, в семеричной системе для цифры 2 все последние цифры разные: 0х2=...0, 1х2=...2, 2х2=...4, 3х2=...6, 4х2=...1, 5х2=...3, 6х2=...5, с набором последних цифр 0, 2, 4, 6, 1, 3, 5.

Благодаря этому свойству для любого числа А, не оканчивающегося на ноль (а в равенстве Ферма последняя цифра чисел А, ну или В, после деления равенства на общий делитель чисел А, В, С нулю не равна), можно подобрать такое множитель g, что число Аg будет иметь сколь угодно длинное окончание вида 000...001. Вот на такое число g мы и умножим все числа-основания A, B, C в равенстве Ферма. При этом единичное окончание сделаем достаточно длинным, а именно на две цифры длиннее, чем число (k) нулей на конце числа U=А+В-С.

Число U нулю не равно – иначе С=А+В и A^n<(А+В)^n-B^n, т.е. равенство Ферма является неравенством.

Вот, собственно, и вся подготовка равенства Ферма для краткого и завершающего исследования. Единственное, что мы еще сделаем: перепишем правую часть равенства Ферма – C^n-B^n, – используя школьную формулу разложения: C^n-B^n=(С-В)Р, или аР. А поскольку далее мы будем оперировать (умножать и складывать) только с цифрами (k+2)-значных окончаний чисел А, В, С, то их головные части можем в расчет не принимать и просто их отбросить (оставив в памяти лишь один факт: левая часть равенства Ферма является СТЕПЕНЬЮ).

Единственное, о чем стоит сказать еще, это о последних цифрах чисел а и Р. В исходном равенстве Ферма число Р оканчивается на цифру 1. Это следует из формулы малой теоремы Ферма, которую можно найти в справочниках. А после умножения равенства Ферма на число g^n число Р умножатеся на число g в степени n-1, которое, согласно малой теореме Ферма, также оканчивается на цифру 1. Так что и в новом эквивалентном равенстве Ферма число Р оканчивается на 1. И если А оканчивается на 1, то и A^n тоже оканчивается на 1 и, следовательно, число а тоже оканчивается на 1.

Итак, мы имеем стартовую ситуацию: последние цифры А", а", Р" чисел А, а, Р оканчиваются на цифру 1.

Ну а дальше начинается милая и увлекательная операция, называемая в преферансе «мельницей»: вводя в рассмотрение последующие цифры а"", а""" и так далее числа а, мы исключительно «легко» вычисляем, что все они также равны нулю! Слово «легко» я взял в кавычки, ибо ключ к этому «легко» человечество не могло найти в течение 350 лет! А ключик действительно оказался неожиданно и ошарашивающе примитивным: число Р нужно представить в виде P=q^(n-1)+Qn^(k+2). На второй член в этой сумме обращить внимание не стоит – ведь в дальнейшем доказательстве мы все цифры после (k+2)-й в числах отбросили (и это кардинально облегчает анализ)! Так что после отбрасывания головных частей чисел равенство Ферма принимает вид: ...1=аq^(n-1), где а и q – не числа, а всего лишь окончания чисел а и q! (Новые обозначения не ввожу, так это затрудняет чтение.)

Остается последний философский вопрос: почему число Р можно представить в виде P=q^(n-1)+Qn^(k+2)? Ответ простой: потому что любое целое число Р с 1 на конце можно представить в таком виде, причем ТОЖДЕСТВЕННО. (Можно представить и многими другими способами, но нам это не нужно.) Действительно, для Р=1 ответ очевиден: P=1^(n-1). Для Р=hn+1 число q=(n-h)n+1, в чем легко убедиться, решая уравнение [(n-h)n+1]^(n-1)==hn+1 по двузначным окончаниям. И так далее (но в дальнейших вычислениях у нас необходимости нет, так как нам понадобится представление лишь чисел вида Р=1+Qn^t).

Уф-ф-ф-ф! Ну вот, философия кончилась, можно перейти к вычислениям на уровне второго класса, разве что лишь еще раз вспомнить формулу бинома Ньютона.

Итак, введем в расмотрение цифру а"" (в числе а=а""n+1) и с ее помощью вычислим цифру q"" (в числе q=q""n+1):
...01=(а""n+1)(q""n+1)^(n-1), или...01=(а""n+1)[(n-q"")n+1], откуда q""=a"".

И теперь правую часть равенства Ферма можно переписать в виде:
A^n=(а""n+1)^n+Dn^(k+2), где значение числа D нас не интересует.

А вот теперь мы переходим к решающему выводу. Число а""n+1 является двузначным окончанием числа А и, СЛЕДОВАТЕЛЬНО, согласно простой лемме ОДНОЗНАЧНО определяет ТРЕТЬЮ цифру степени A^n. И более того, из разложения бинома Ньютона
(а""n+1)^n, учитывая, что к каждому члену разложения (кроме первого, что погоды изменить уже не может!) присоединяется ПРОСТОЙ сомножитель n (основание счисления!), видно, что эта третья цифра равна а"". Но с помощью умножения равенства Ферма на g^n мы k+1 цифру перед последней 1 в числе А превратили в 0. И, следовательно, а""=0!!!

Тем самым мы завершили цикл: введя а"", мы нашли, что и q""=а"", а в заключение и а""=0!

Ну и остается сказать, что проведя совершенно аналогичные вычисления и последующих k цифр, мы получаем заключительное равенство: (k+2)-значное окончание числа а, или С-В, – так же, как и числа А, – равно 1. Но тогда (k+2)-я цифра числа С-А-В РАВНА нулю, в то время как она нулю НЕ РАВНА!!!

Вот, собственно, и всё доказательство. Для его понимания вовсе не требуется иметь высшее образование и, тем более, быть профессиональным математиком. Тем не менее, профессионалы помалкивают...

Удобочитаемый текст полного доказательства расположен здесь:

Рецензии

Здравствуйте, Виктор. Мне понравилось Ваше резюме. "Не позволить умереть раньше смерти" - здорово, конечно, звучит. От встречи на Прозе с теоремой Ферма, честно говоря, обалдела! Разве ей здесь место? Есть научные, научно-популярные и чайниковые сайты. А в остальном, спасибо за Вашу литературную работу.
С уважением, Аня.

Уважаемая Аня, несмотря на довольно жесткую цензуру, Проза позволяет писать ОБО ВСЕМ. С теоремой Ферма положение таково: крупные математические форумы к ферматистам относятся косо, с хамством и в целом третируют, как могут. Однако на мелких российских, английских и французских форумах я последний вариант доказательства представил. Никаких контрдоводов никто пока не выдвинул, да и, уверен, не выдвинет (доказательство проверено весьма тщательно). В субботу опубликую философскую заметку о теореме.
На прозе почти нет хамов, и если с ними не якшаться, то довольно скоро они отлипают.
На Прозе представлены почти все мои работы, поэтому и доказательство также поместил сюда.
До скорого,

Интерес к математике обозначился у Ферма как-то неожиданно и в достаточно зрелом возрасте. В 1629 г. в его руки попадает латинский перевод работы Паппа, содержащий краткую сводку результатов Аполлония о свойствах конических сечений. Ферма, полиглот, знаток права и античной филологии, вдруг задается целью полностью восстановить ход рассуждений знаменитого ученого. С таким же успехом современный адвокат может попытаться самостоятельно воспроизвести все доказательства по монографии из проблем, скажем, алгебраической топологии. Однако, немыслимое предприятие увенчивается успехом. Более того, вникая в геометрические построения древних, он совершает удивительное открытие: для нахождения максимумов и минимумов площадей фигур не нужны хитроумные чертежи. Всегда можно составить и решить некое простое алгебраическое уравнение, корни которого определяют экстремум. Он придумал алгоритм, который станет основой дифференциального исчисления.

Он быстро продвинулся дальше. Он нашел достаточные условия существования максимумов, научился определять точки перегиба, провел касательные ко всем известным кривым второго и третьего порядка. Еще несколько лет, и он находит новый чисто алгебраический метод нахождения квадратур для парабол и гипербол произвольного порядка (то есть интегралов от функций вида y p = Cx q и y p x q = С ), вычисляет площади, объемы, моменты инерции тел вращения. Это был настоящий прорыв. Чувствуя это, Ферма начинает искать общения с математическими авторитетами того времени. Он уверен в себе и жаждет признания.

В 1636 г. он пишет первое письмо Его преподобию Марену Мерсенну: ”Святой отец! Я Вам чрезвычайно признателен за честь, которую Вы мне оказали, подав надежду на то, что мы сможем беседовать письменно; ...Я буду очень рад узнать от Вас о всех новых трактатах и книгах по Математике, которые появилась за последние пять-шесть лет. ...Я нашел также много аналитических методов для различных проблем, как числовых, так и геометрических, для решения которых анализ Виета недостаточен. Всем этим я поделюсь с Вами, когда Вы захотите, и притом без всякого высокомерия, от которого я более свободен и более далек, чем любой другой человек на свете.”

Кто такой отец Мерсенн? Это францисканский монах, ученый скромных дарований и замечательный организатор, в течении 30 лет возглавлявший парижский математический кружок, который стал подлинным центром французской науки. В последствии кружок Мерсенна указом Людовика XIV будет преобразован в Парижскую академию наук. Мерсенн неустанно вел огромную переписку, и его келья в монастыре ордена минимов на Королевской площади была своего рода “почтамтом для всех ученых Европы, начиная от Галилея и кончая Гоббсом”. Переписка заменяла тогда научные журналы, которые появились значительно позже. Сборища у Мерсенна происходили еженедельно. Ядро кружка составляли самые блестящие естествоиспытатели того времен: Робервиль, Паскаль-отец, Дезарг, Мидорж, Арди и конечно же, знаменитый и повсеместно признанный Декарт. Рене дю Перрон Декарт (Картезий), дворянская мантия, два родовых поместья, основоположник картезианства, “отец” аналитической геометрии, один из основателей новой математики, а так же друг и товарищ Мерсенна по иезуитскому колледжу. Этот замечательный человек станет кошмаром для Ферма.

Мерсенн счел результаты Ферма достаточно интересными, чтобы ввести провинциала в свой элитный клуб. Ферма тут же завязывает переписку со многими членами кружка и буквально засыпает письмами самого Мерсенна. Кроме того, он отсылает на суд ученых мужей законченные рукописи: “Введение к плоским и телесным местам”, а год спустя - “Способ отыскания максимумов и минимумов” и “Ответы на вопросы Б. Кавальери”. То, что излагал Ферма, была абсолютная новь, однако сенсация не состоялась. Современники не содрогнулись. Они мало, что поняли, но зато нашли однозначные указание на то, что идею алгоритма максимизации Ферма заимствовал из трактата Иоханнеса Кеплера с забавным названием “Новая стереометрия винных бочек”. Действительно, в рассуждения Кеплера встречаются фразы типа “Объем фигуры наибольший, если по обе стороны от места наибольшего значения убывание сначала нечувствительно”. Но идея малости приращения функции вблизи экстремума вовсе не носилась в воздухе. Лучшие аналитические умы того времени были не готовы к манипуляциям с малыми величинами. Дело в том, что в то время алгебра считалась разновидностью арифметики, то есть математикой второго сорта, примитивным подручным средством, разработанным для нужд низменной практики (“хорошо считают только торговцы”). Традиция предписывала придерживаться сугубо геометрических методов доказательств, восходящих к античной математике. Ферма первый понял, что бесконечно малые величины можно складывать и сокращать, но довольно затруднительно изображать в виде отрезков.

Понадобилось почти столетие, чтобы Жан д’Аламбер в знаменитой “Энциклопедии” признал: “Ферма был изобретателем новых исчислений. Именно у него мы встречаем первое приложение дифференциалов для нахождения касательных”. В конце XVIII века еще более определенно выскажется Жозеф Луи граф де Лагранж: “Но геометры - современники Ферма - не поняли этого нового рода исчисления. Они усмотрели лишь частные случаи. И это изобретение, которое появилось незадолго перед “Геометрией” Декарта, оставалось бесплодным в течении сорока лет”. Лагранж имеет в виду 1674 г., когда вышли в свет “Лекции” Исаака Барроу, подробно освещавшие метод Ферма.

Кроме всего прочего быстро обнаружилось, что Ферма более склонен формулировать новые проблемы, нежели, чем смиренно решать задачи, предложенные метрами. В эпоху дуэлей обмен задачами между учеными мужами был общепринят, как форма выяснения проблем, связанных с субординацией. Однако Ферма явно не знает меры. Каждое его письмо - это вызов, содержащий десятки сложных нерешенных задач, причем на самые неожиданные темы. Вот образчик его стиля (адресовано Френиклю де Бесси): “Item, каков наименьший квадрат, который при уменьшении на 109 и прибавлении единицы даст квадрат? Если Вы не пришлете мне общего решения, то пришлите частное для этих двух чисел, которые я выбрал небольшими, чтобы Вас не очень затруднить. После того как Я получу от Вас ответ, я предложу Вам некоторые другие вещи. Ясно без особых оговорок, что в моем предложении требуется найти целые числа, поскольку в случае дробных чисел самый незначительный арифметик смог бы прийти к цели.” Ферма часто повторялся, формулируя одни и те же вопросы по несколько раз, и откровенно блефовал, утверждая, что располагает необыкновенно изящным решением предложенной задачи. Не обходилось и без прямых ошибок. Некоторые из них были замечены современниками, а кое какие коварные утверждения вводили в заблуждение читателей в течении столетий.

Кружок Мерсенна прореагировал адекватно. Лишь Робервиль, единственный член кружка, имевший проблемы с происхождением, сохраняет дружеский тон писем. Добрый пастырь отец Мерсенн пытался вразумить “тулузского нахала”. Но Ферма не намерен оправдываться: ”Преподобный отец! Вы мне пишете, что постановка моих невозможных проблем рассердила и охладила господ Сен-Мартена и Френикля и что это послужило причиной прекращения их писем. Однако я хочу возразить им, что то, что кажется сначала невозможным, на самом деле не является таковым и что есть много проблем, о которых, как сказал Архимед... ” и т.д..

Однако Ферма лукавит. Именно Френиклю он послал задачу о нахождении прямоугольного треугольника с целочисленными сторонами, площадь которого равна квадрату целого числа. Послал, хотя знал, что задача заведомо не имеет решения.

Самую враждебную позицию по отношению к Ферма занял Декарт. В его письме Мерсенну от 1938 г. читаем: “так как я узнал, что это тот самый человек который перед тем пытался опровергнуть мою “Диоптрику”, и так как Вы сообщили мне, что он послал это после того, как прочел мою “Геометрию” и в удивлении, что я не нашел ту же вещь, т. е. (как имею основание его истолковать) послал это с целью вступить в соперничество и показать, что в этом он знает больше, чем я, и так как еще из ваших писем я узнал, что за ним числится репутация весьма сведущего геометра, то я считаю себя обязанным ему ответить.” Свой ответ Декарт в последствии торжественно обозначит как “малый процесс Математики против г. Ферма”.

Легко понять, что привело в ярость именитого ученого. Во-первых, в рассуждениях Ферма постоянно фигурируют координатные оси и представление чисел отрезками - прием, который Декарт всесторонне развивает в своей только что изданной “Геометрии”. Ферма приходит к идее замены чертежа вычислениями совершенно самостоятельно, в чем-то он даже более последователен, чем Декарт. Во-вторых, Ферма блестяще демонстрирует эффективность своего метода нахождения минимумов на примере задачи о кратчайшем пути светового луча, уточняя и дополняя Декарта с его “Диоптрикой”.

Заслуги Декарта как мыслителя и новатора огромны, но откроем современную “Математическую энциклопедию” и просмотрим список терминов связанных с его именем: “Декартовы координаты” (Лейбниц, 1692) , “Декартов лист”, “Декарта овалы ”. Ни одно из его рассуждений не вошло в историю как “Теорема Декарта”. Декарт в первую очередь идеолог: он основатель философской школы, он формирует понятия, совершенствует систему буквенных обозначений, но в его творческом наследии мало новых конкретных приемов. В противоположность ему Пьер Ферма мало пишет, но по любому поводу может придумать массу остроумных математических трюков (см. там же “Теорема Ферма”, ”Принцип Ферма”, ”Метод бесконечного спуска Ферма”). Вероятно, они вполне справедливо завидовали друг другу. Столкновение было неизбежно. При иезуитском посредничестве Мерсенна разгорается война, длившаяся два года. Впрочем, Мерсенн и здесь оказался прав перед историей: яростная схватка двух титанов, их напряженная, мягко говоря, полемика способствовала осмыслению ключевых понятий математического анализа.

Первым теряет интерес к дискуссии Ферма. По-видимому, он напрямую объяснился с Декартом и больше никогда не задевал соперника. В одной из своих последних работ “Синтез для рефракции”, рукопись которой он послал де ла Шамбру, Ферма через слово поминает “ученейшего Декарта” и всячески подчеркивает его приоритет в вопросах оптики. Между тем именно эта рукопись содержала описание знаменитого “принципа Ферма”, который обеспечивает исчерпывающее объяснение законов отражения и преломления света. Реверансы в сторону Декарта в работе такого уровня были совершенно излишни.

Что же произошло? Почему Ферма, отложив в сторону самолюбие, пошел на примирение? Читая письма Ферма тех лет (1638 - 1640 гг.), можно предположить самое простое: в этот период его научные интересы резко изменились. Он забрасывает модную циклоиду, перестает интересоваться касательными и площадями, и на долгие 20 лет забывает о своем методе нахождения максимума. Имея огромные заслуги в математике непрерывного, Ферма целиком погружается в математику дискретного, оставив опостылевшие геометрические чертежи своим оппонентам. Его новой страстью становятся числа. Собственно говоря, вся “Теория чисел”, как самостоятельная математическая дисциплина, своим появлением на свет целиком обязана жизни и творчеству Ферма.

<…> После смерти Ферма его сын Самюэль издал в 1670 г. принадлежащий отцу экземпляр “Арифметики” под названием “Шесть книг арифметики александрийца Диофанта с комментариями Л. Г. Баше и замечаниями П. де Ферма, тулузского сенатора”. В книгу были включены также некоторые письма Декарта и полный текст сочинения Жака де Бильи “Новое открытие в искусстве анализа”, написанное на основе писем Ферма. Издание имело невероятный успех. Перед изумленными специалистами открылся невиданный яркий мир. Неожиданность, а главное доступность, демократичность теоретико-числовых результатов Ферма породили массу подражаний. В то время мало кто понимал как вычисляется площадь параболы, но каждый школяр мог осознать формулировку Великой теоремы Ферма. Началась настоящая охота за неизвестными и утерянными письмами ученого. До конца XVII в. было издано и переиздано каждое найденное его слово. Но бурная история развития идей Ферма только начиналась.

Вряд ли хоть один год в жизни нашей редакции проходил без того, чтобы она не получала добрый десяток доказательств теоремы Ферма. Теперь, после «победы» над ней, поток поутих, но не иссяк.

Конечно, не для того чтобы его высушить окончательно, публикуем мы эту статью. И не в своё оправдание - что, мол, вот почему мы отмалчивались, сами не доросли ещё до обсуждения столь сложных проблем.

Но если статья действительно покажется сложной, загляните сразу в её конец. Вы должны будете почувствовать, что страсти поутихли временно, наука не окончена, и вскорости новые доказательства новых теорем направятся в редакции.

Кажется, ХХ век прошёл не зря. Сначала люди создали на миг второе Солнце, взорвав водородную бомбу. Потом они прогуливались по Луне и, наконец, доказали пресловутую теорему Ферма. Из этих трёх чудес первые два у всех на слуху, ибо они вызвали огромные социальные последствия. Напротив, третье чудо выглядит очередной учёной игрушкой - в одном ряду с теорией относительности, квантовой механикой и теоремой Гёделя о неполноте арифметики. Впрочем, относительность и кванты привели физиков к водородной бомбе, а изыскания математиков наполнили наш мир компьютерами. Продолжится ли этот ряд чудес в XXI веке? Можно ли проследить связь между очередными учёными игрушками и революциями в нашем быту? Позволяет ли эта связь делать успешные предсказания? Попробуем понять это на примере теоремы Ферма.

Заметим для начала, что она родилась гораздо позже своего естественного срока. Ведь первый частный случай теоремы Ферма - это уравнение Пифагора X 2 + Y 2 = Z 2 , связывающее длины сторон прямоугольного треугольника. Доказав эту формулу двадцать пять веков назад, Пифагор сразу задался вопросом: много ли в природе таких треугольников, у которых оба катета и гипотенуза имеют целую длину? Кажется, египтяне знали лишь один такой треугольник - со сторонами (3, 4, 5) . Но нетрудно найти и другие варианты: например (5, 12, 13) , (7, 24, 25) или (8, 15, 17) . Во всех этих случаях длина гипотенузы имеет вид (А 2 + В 2) , где А и В - взаимно простые числа разной чётности. При этом длины катетов равны (А 2 - В 2) и 2АВ.

Заметив эти соотношения, Пифагор без труда доказал, что любая тройка чисел (X = A 2 - B 2 , Y = 2AB , Z = A 2 + B 2) является решением уравнения X 2 + Y 2 = Z 2 и задаёт прямоугольник со взаимно простыми длинами сторон. Видно также, что число разных троек такого сорта бесконечно. Но все ли решения уравнения Пифагора имеют такой вид? Ни доказать, ни опровергнуть такую гипотезу Пифагор не смог и оставил эту проблему потомкам, не заостряя на ней внимание. Кому охота подчёркивать свои неудачи? Похоже, что после этого проблема целочисленных прямоугольных треугольников лежала в забвении семь столетий - до тех пор, пока в Александрии не появился новый математический гений по имени Диофант.

Мы мало знаем о нём, но ясно: он был совсем не похож на Пифагора. Тот чувствовал себя царём в геометрии и даже за её пределами - будь то в музыке, астрономии или политике. Первая арифметическая связь между длинами сторон благозвучной арфы, первая модель Вселенной из концентрических сфер, несущих планеты и звёзды, с Землёю в центре, наконец, первая республика учёных в италийском городе Кротоне - таковы личные достижения Пифагора. Что мог противопоставить таким успехам Диофант - скромный научный сотрудник великого Музея, давно переставшего быть гордостью городской толпы?

Только одно: лучшее понимание древнего мира чисел, законы которого едва успели ощутить Пифагор, Евклид и Архимед. Заметим, что Диофант ещё не владел позиционной системой записи больших чисел, но он знал, что такое отрицательные числа и, наверное, провёл немало часов, размышляя о том, почему произведение двух отрицательных чисел положительно. Мир целых чисел впервые открылся Диофанту как особая вселенная, отличная от мира звёзд, отрезков или многогранников. Главное занятие учёных в этом мире - решение уравнений, настоящий мастер находит все возможные решения и доказывает, что других решений нет. Так поступил Диофант с квадратным уравнением Пифагора, а потом задумался: имеет ли хоть одно решение сходное кубическое уравнение X 3 + Y 3 = Z 3 ?

Найти такое решение Диофанту не удалось, его попытка доказать, что решений нет, тоже не увенчалась успехом. Поэтому, оформляя итоги своих трудов в книге «Арифметика» (это был первый в мире учебник теории чисел), Диофант подробно разобрал уравнение Пифагора, но ни словом не заикнулся о возможных обобщениях этого уравнения. А мог бы: ведь именно Диофант впервые предложил обозначения для степеней целых чисел! Но увы: понятие «задачник» было чуждо эллинской науке и педагогике, а публиковать перечни нерешённых задач считалось неприличным занятием (только Сократ поступал иначе). Не можешь решить проблему - молчи! Диофант умолк, и это молчание затянулось на четырнадцать веков - вплоть до наступления Нового времени, когда возродился интерес к процессу человеческого мышления.

Кто только и о чём не фантазировал на рубеже XVI - XVII веков! Неутомимый вычислитель Кеплер пытался угадать связь между расстояниями от Солнца до планет. Пифагору это не удалось. Кеплер добился успеха после того, как научился интегрировать многочлены и другие несложные функции. Напротив, фантазёр Декарт не любил длинных расчётов, но именно он первый представил все точки плоскости или пространства, как наборы чисел. Эта дерзкая модель сводит любую геометрическую задачу о фигурах к некой алгебраической задаче об уравнениях - и наоборот. Например, целые решения уравнения Пифагора соответствуют целым точкам на поверхности конуса. Поверхность, соответствующая кубическому уравнению X 3 + Y 3 = Z 3 , выглядит сложнее, её геометрические свойства ничего не подсказали Пьеру Ферма, и тому пришлось прокладывать новые пути сквозь дебри целых чисел.

В 1636 году в руки молодого юриста из Тулузы попала книга Диофанта, только что переведённая на латынь с греческого оригинала, случайно уцелевшего в каком-то византийском архиве и привезённого в Италию кем-то из беглецов-ромеев в пору турецкого разорения. Читая изящное рассуждение об уравнении Пифагора, Ферма задумался: можно ли найти такое его решение, которое состоит из трёх чисел-квадратов? Малых чисел такого сорта нет: это легко проверить перебором. А как насчёт больших решений? Не имея компьютера, Ферма не мог поставить численный эксперимент. Но он заметил, что по каждому «большому» решению уравнения X 4 + Y 4 = Z 4 можно построить меньшее его решение. Значит, сумма четвёртых степеней двух целых чисел никогда не равна той же степени третьего числа! А как насчёт суммы двух кубов?

Вдохновлённый успехом для степени 4, Ферма попытался модифицировать «метод спуска» для степени 3 - и это ему удалось. Оказалось, что невозможно составить два малых куба из тех единичных кубиков, на которые рассыпался большой куб с целой длиной ребра. Торжествующий Ферма сделал краткую запись на полях книги Диофанта и послал в Париж письмо с подробным сообщением о своём открытии. Но ответа он не получил - хотя обычно столичные математики быстро реагировали на очередной успех их одинокого коллеги-соперника в Тулузе. В чём тут дело?

Очень просто: к середине XVII века арифметика вышла из моды. Большие успехи итальянских алгебраистов XVI века (когда были решены уравнения-многочлены степеней 3 и 4) не стали началом общенаучной революции, ибо они не позволили решить новые яркие задачи в сопредельных областях науки. Вот если бы Кеплеру удалось угадать орбиты планет с помощью чистой арифметики… Но увы - для этого потребовался математический анализ. Значит, его и надо развивать - вплоть до полного торжества математических методов в естествознании! Но анализ вырастает из геометрии, арифметика же остаётся полем забав для досужих юристов и прочих любителей вечной науки о числах и фигурах.

Итак, арифметические успехи Ферма оказались несвоевременны и остались неоценёнными. Он не был этим огорчён: для славы математика довольно впервые открывшихся ему фактов дифференциального исчисления, аналитической геометрии и теории вероятностей. Все эти открытия Ферма сразу вошли в золотой фонд новой европейской науки, меж тем как теория чисел отошла на задний план ещё на сто лет - пока её не возродил Эйлер.

Этот «король математиков» XVIII века был чемпионом во всех применениях анализа, но не пренебрегал и арифметикой, поскольку новые методы анализа приводили к неожиданным фактам о числах. Кто бы мог подумать, что бесконечная сумма обратных квадратов (1 + 1/4 + 1/9 + 1/16+…) равна π 2 /6? Кто из эллинов мог предвидеть, что похожие ряды позволят доказать иррациональность числа π?

Такие успехи заставили Эйлера внимательно перечитать сохранившиеся рукописи Ферма (благо, сын великого француза успел их издать). Правда, доказательство «большой теоремы» для степени 3 не сохранилось, но Эйлер легко восстановил его по одному лишь указанию на «метод спуска», и сразу постарался перенести этот метод на следующую простую степень - 5.

Не тут-то было! В рассуждениях Эйлера появились комплексные числа, которые Ферма ухитрился не заметить (таков обычный удел первооткрывателей). Но разложение целых комплексных чисел на множители - дело тонкое. Даже Эйлер не разобрался в нём до конца и отложил «проблему Ферма» в сторону, торопясь завершить свой главный труд - учебник «Основы анализа», который должен был помочь каждому талантливому юноше встать вровень с Лейбницем и Эйлером. Издание учебника завершилось в Петербурге в 1770 году. Но к теореме Ферма Эйлер уже не возвращался, будучи уверен: всё, чего коснулись его руки и разум, не будет забыто новой учёной молодёжью.

Так и вышло: преемником Эйлера в теории чисел стал француз Адриен Лежандр. В конце XVIII века он завершил доказательство теоремы Ферма для степени 5 - и хотя потерпел неудачу для больших простых степеней, но составил очередной учебник теории чисел. Пусть его юные читатели превзойдут автора так же, как читатели «Математических принципов натурфилософии» превзошли великого Ньютона! Лежандр был не чета Ньютону или Эйлеру, но среди его читателей оказались два гения: Карл Гаусс и Эварист Галуа.

Столь высокой кучности гениев способствовала Французская революция, провозгласившая государственный культ Разума. После этого каждый талантливый учёный ощутил себя Колумбом или Александром Македонским, способным открыть или покорить новый мир. Многим это удавалось, оттого в XIX веке научно-технический прогресс сделался главным движителем эволюции человечества, и все разумные правители (начиная с Наполеона) сознавали это.

Гаусс по характеру был близок к Колумбу. Но он (как и Ньютон) не умел пленять воображение правителей или студентов красивыми речами, и потому ограничил свои амбиции сферой научных понятий. Здесь он мог всё, чего хотел. Например, древняя задача о трисекции угла почему-то не решается с помощью циркуля и линейки. С помощью комплексных чисел, изображающих точки плоскости, Гаусс переводит эту задачу на язык алгебры - и получает общую теорию выполнимости тех или иных геометрических построений. Так одновременно появились строгое доказательство невозможности построения циркулем и линейкой правильного 7- или 9-угольника и такой способ построения правильного 17-угольника, о котором не мечтали самые мудрые геометры Эллады.

Конечно, такой успех не даётся даром: приходится изобретать новые понятия, отражающие суть дела. Ньютон ввёл три таких понятия: флюксию (производную), флюенту (интеграл) и степенной ряд. Их хватило для создания математического анализа и первой научной модели физического мира, включающей механику и астрономию. Гаусс тоже ввёл три новых понятия: векторное пространство, поле и кольцо. Из них выросла новая алгебра, подчинившая себе греческую арифметику и созданную Ньютоном теорию числовых функций. Оставалось ещё подчинить алгебре логику, созданную Аристотелем: тогда можно будет с помощью расчётов доказывать выводимость или невыводимость любых научных утверждений из данного набора аксиом! Например, выводится ли теорема Ферма из аксиом арифметики, или постулат Евклида о параллельных прямых - из прочих аксиом планиметрии?

Эту дерзкую мечту Гаусс не успел осуществить - хотя продвинулся он далеко и угадал возможность существования экзотических (некоммутативных) алгебр. Построить первую неевклидову геометрию сумел только дерзкий россиянин Николай Лобачевский, а первую некоммутативную алгебру (Теорию Групп) - француз Эварист Галуа. И лишь много позже смерти Гаусса - в 1872 году - юный немец Феликс Кляйн догадался, что разнообразие возможных геометрий можно привести во взаимно-однозначное соответствие с разнообразием возможных алгебр. Попросту говоря, всякая геометрия определяется своей группой симметрий - тогда как общая алгебра изучает все возможные группы и их свойства.

Но такое понимание геометрии и алгебры пришло гораздо позже, а штурм теоремы Ферма возобновился ещё при жизни Гаусса. Сам он пренебрёг теоремой Ферма из принципа: не царское это дело - решать отдельные задачи, которые не вписываются в яркую научную теорию! Но ученики Гаусса, вооружённые его новой алгеброй и классическим анализом Ньютона и Эйлера, рассуждали иначе. Сначала Петер Дирихле доказал теорему Ферма для степени 7, используя кольцо целых комплексных чисел, порождённых корнями этой степени из единицы. Потом Эрнст Куммер распространил метод Дирихле на ВСЕ простые степени (!) - так ему сгоряча показалось, и он восторжествовал. Но вскоре пришло отрезвление: доказательство проходит безупречно, только если всякий элемент кольца однозначно разлагается на простые множители! Для обычных целых чисел этот факт был известен ещё Евклиду, но только Гаусс дал его строгое доказательство. А как обстоит дело с целыми комплексными числами?

Согласно «принципу наибольшей пакости», там может и ДОЛЖНО встретиться неоднозначное разложение на множители! Как только Куммер научился вычислять степень неоднозначности методами математического анализа, он обнаружил эту пакость в кольце для степени 23. Гаусс не успел узнать о таком варианте экзотической коммутативной алгебры, но ученики Гаусса вырастили на месте очередной пакости новую красивую Теорию Идеалов. Правда, решению проблемы Ферма это не особенно помогло: только стала яснее её природная сложность.

На протяжении XIX века этот древний идол требовал от своих почитателей всё новых жертв в форме новых сложных теорий. Не удивительно, что к началу ХХ века верующие пришли в уныние и взбунтовались, отвергая былой кумир. Слово «ферматист» стало бранным прозвищем среди профессиональных математиков. И хотя за полное доказательство теоремы Ферма была назначена немалая премия, но её соискателями выступали в основном самоуверенные невежды. Сильнейшие математики той поры - Пуанкаре и Гильберт - демонстративно сторонились этой темы.

В 1900 году Гильберт не включил теорему Ферма в перечень двадцати трёх важнейших проблем, стоящих перед математикой ХХ века. Правда, он включил в их ряд общую проблему разрешимости диофантовых уравнений. Намёк был ясен: следуйте примеру Гаусса и Галуа, создавайте общие теории новых математических объектов! Тогда в один прекрасный (но не предсказуемый заранее) день старая заноза выпадет сама собой.

Именно так действовал великий романтик Анри Пуанкаре. Пренебрегая многими «вечными» проблемами, он всю жизнь изучал СИММЕТРИИ тех или иных объектов математики или физики: то функций комплексного переменного, то траекторий движения небесных тел, то алгебраических кривых или гладких многообразий (это многомерные обобщения кривых линий). Мотив его действий был прост: если два разных объекта обладают сходными симметриями - значит, между ними возможно внутреннее родство, которое мы пока не в силах постичь! Например, каждая из двумерных геометрий (Евклида, Лобачевского или Римана) имеет свою группу симметрий, которая действует на плоскости. Но точки плоскости суть комплексные числа: таким путём действие любой геометрической группы переносится в безбрежный мир комплексных функций. Можно и нужно изучать самые симметричные из этих функций: АВТОМОРФНЫЕ (которые подвластны группе Евклида) и МОДУЛЯРНЫЕ (которые подчиняются группе Лобачевского)!

А ещё на плоскости есть эллиптические кривые. Они никак не связаны с эллипсом, но задаются уравнениями вида Y 2 = AX 3 + BX 2 + CX и потому пересекаются с любой прямой в трёх точках. Этот факт позволяет ввести среди точек эллиптической кривой умножение - превратить её в группу. Алгебраическое устройство этой группы отражает геометрические свойства кривой, может быть, она однозначно определена своей группой? Этот вопрос стоит изучить, поскольку для некоторых кривых интересующая нас группа оказывается модулярной, то есть она связана с геометрией Лобачевского…

Так рассуждал Пуанкаре, соблазняя математическую молодёжь Европы, но в начале ХХ века эти соблазны не привели к ярким теоремам или гипотезам. Иначе получилось с призывом Гильберта: изучать общие решения диофантовых уравнений с целыми коэффициентами! В 1922 году молодой американец Льюис Морделл связал множество решений такого уравнения (это - векторное пространство определённой размерности) с геометрическим родом той комплексной кривой, которая задаётся этим уравнением. Морделл пришёл к выводу, что если степень уравнения достаточно велика (больше двух), то размерность пространства решений выражается через род кривой, и потому эта размерность КОНЕЧНА. Напротив - в степени 2 уравнение Пифагора имеет БЕСКОНЕЧНОМЕРНОЕ семейство решений!

Конечно, Морделл видел связь своей гипотезы с теоремой Ферма. Если станет известно, что для каждой степени n > 2 пространство целых решений уравнения Ферма конечномерно, это поможет доказать, что таких решений вовсе нет! Но никаких путей к доказательству своей гипотезы Морделл не видел - и хотя он прожил долгую жизнь, но не дождался превращения этой гипотезы в теорему Фальтингса. Это случилось в 1983 году - в совсем иную эпоху, после великих успехов алгебраической топологии многообразий.

Пуанкаре создал эту науку как бы нечаянно: ему захотелось узнать, какие бывают трёхмерные многообразия. Ведь разобрался же Риман в строении всех замкнутых поверхностей и получил очень простой ответ! Если в трёхмерном или многомерном случае такого ответа нет - нужно придумать систему алгебраических инвариантов многообразия, определяющую его геометрическое строение. Лучше всего, если такие инварианты будут элементами каких-нибудь групп - коммутативных или некоммутативных.

Как ни странно, этот дерзкий план Пуанкаре удался: он был выполнен с 1950 по 1970 год благодаря усилиям очень многих геометров и алгебраистов. До 1950 года шло тихое накопление разных методов классификации многообразий, а после этой даты как будто накопилась критическая масса людей и идей и грянул взрыв, сравнимый с изобретением математического анализа в XVII веке. Но аналитическая революция растянулась на полтора столетия, охватив творческие биографии четырёх поколений математиков - от Ньютона и Лейбница до Фурье и Коши. Напротив, топологическая революция ХХ века уложилась в двадцать лет - благодаря большому числу её участников. При этом сложилось многочисленное поколение самоуверенных молодых математиков, вдруг оставшихся без работы на исторической родине.

В семидесятые годы они устремились в сопредельные области математики и теоретической физики. Многие создали свои научные школы в десятках университетов Европы и Америки. Между этими центрами поныне циркулирует множество учеников разного возраста и национальности, с разными способностями и склонностями, и каждый хочет прославиться каким-нибудь открытием. Именно в этом столпотворении были, наконец, доказаны гипотеза Морделла и теорема Ферма.

Однако первая ласточка, не ведая о своей судьбе, выросла в Японии в голодные и безработные послевоенные годы. Звали ласточку Ютака Танияма. В 1955 году этому герою исполнилось 28 лет, и он решил (вместе с друзьями Горо Шимура и Такаудзи Тамагава) возродить в Японии математические исследования. С чего начать? Конечно, с преодоления изоляции от зарубежных коллег! Так в 1955 году три молодых японца устроили в Токио первую международную конференцию по алгебре и теории чисел. Сделать это в перевоспитанной американцами Японии было, видимо, легче, чем в замороженной Сталиным России…

Среди почётных гостей были два богатыря из Франции: Андре Вейль и Жан-Пьер Серр. Тут японцам крупно повезло: Вейль был признанным главой французских алгебраистов и членом группы Бурбаки, а молодой Серр играл сходную роль среди топологов. В жарких дискуссиях с ними головы японской молодёжи трещали, мозги плавились, но в итоге кристаллизовались такие идеи и планы, которые вряд ли могли родиться в иной обстановке.

Однажды Танияма пристал к Вейлю с неким вопросом насчёт эллиптических кривых и модулярных функций. Сначала француз ничего не понял: Танияма был не мастер изъясняться по-английски. Потом суть дела прояснилась, но придать своим надеждам точную формулировку Танияма так и не сумел. Всё, что Вейль мог ответить молодому японцу, - это что если ему очень повезёт по части вдохновения, то из его невнятных гипотез вырастет что-то дельное. Но пока надежда на это слаба!

Очевидно, Вейль не заметил небесного огня во взоре Танияма. А огонь-то был: похоже, что на миг в японца вселилась неукротимая мысль покойного Пуанкаре! Танияма пришёл к убеждению, что каждая эллиптическая кривая порождается модулярными функциями - точнее, она «униформизуется модулярной формой». Увы, эта точная формулировка родилась много позже - в разговорах Танияма с его другом Шимура. А потом Танияма покончил с собой в приступе депрессии… Его гипотеза осталась без хозяина: непонятно было, как её доказать или где её проверить, и оттого её долгое время никто не принимал всерьёз. Первый отклик пришёл лишь через тридцать лет - почти как в эпоху Ферма!

Лёд тронулся в 1983 году, когда двадцатисемилетний немец Герд Фальтингс объявил всему миру: гипотеза Морделла доказана! Математики насторожились, но Фальтингс был истинный немец: в его длинном и сложном доказательстве не нашлось пробелов. Просто пришло время, накопились факты и понятия - и вот один талантливый алгебраист, опираясь на результаты десяти других алгебраистов, сумел решить проблему, которая шестьдесят лет простояла в ожидании хозяина. В математике ХХ века это не редкость. Стоит вспомнить вековую континуум-проблему в теории множеств, две гипотезы Бернсайда в теории групп или гипотезу Пуанкаре в топологии. Наконец и в теории чисел пришла пора собирать урожай давних посевов… Какая вершина станет следующей в ряду покорённых математиками? Неужели рухнут проблема Эйлера, гипотеза Римана или теорема Ферма? Хорошо бы!

И вот через два года после откровения Фальтингса в Германии объявился ещё один вдохновенный математик. Звали его Герхард Фрей, и утверждал он нечто странное: будто теорема Ферма ВЫВОДИТСЯ из гипотезы Танияма! К сожалению, стилем изложения своих мыслей Фрей больше напоминал невезучего Танияма, чем своего чёткого соотечественника Фальтингса. В Германии Фрея никто не понял, и он поехал за океан - в славный городок Принстон, где после Эйнштейна привыкли и не к таким визитёрам. Недаром там свил своё гнездо Барри Мазур - разносторонний тополог, один из героев недавнего штурма гладких многообразий. И вырос рядом с Мазуром ученик - Кен Рибет, равно искушённый в тонкостях топологии и алгебры, но ещё ничем себя не прославивший.

Впервые услыхав речи Фрея, Рибет решил, что это чушь и околонаучная фантастика (вероятно, так же реагировал Вейль на откровения Танияма). Но забыть эту «фантастику» Рибет не смог и временами возвращался к ней мысленно. Через полгода Рибет поверил, что в фантазиях Фрея есть нечто дельное, а через год он решил, что сам почти умеет доказать странную гипотезу Фрея. Но оставались некоторые «дырки», и Рибет решил исповедаться своему шефу Мазуру. Тот внимательно выслушал ученика и спокойно ответил: «Да у тебя же всё сделано! Вот здесь нужно применить преобразование Ф, тут - воспользоваться леммами В и К, и всё примет безупречный вид!» Так Рибет совершил прыжок из безвестности в бессмертие, использовав катапульту в лице Фрея и Мазура. По справедливости, всем им - вместе с покойным Танияма - следовало бы считаться доказателями великой теоремы Ферма.

Да вот беда: они выводили своё утверждение из гипотезы Танияма, которая сама не доказана! А вдруг она неверна? Математики давно знают, что «из лжи следует всё, что угодно», если догадка Танияма ошибочна, то грош цена безупречным рассуждениям Рибета! Нужно срочно доказывать (или опровергать) гипотезу Танияма - иначе кто-нибудь вроде Фальтингса докажет теорему Ферма иным путём. Он и выйдет в герои!

Вряд ли мы когда-нибудь узнаем, сколько юных или матёрых алгебраистов накинулось на теорему Ферма после успеха Фальтингса или после победы Рибета в 1986 году. Все они старались работать в тайне, чтобы в случае неудачи не быть причисленными к сообществу «чайников»-ферматистов. Известно, что самый удачливый из всех - Эндрю Уайлз из Кембриджа - ощутил вкус победы только в начале 1993 года. Это не столько обрадовало, сколько напугало Уайлза: что если в его доказательстве гипотезы Танияма обнаружится ошибка или пробел? Тогда погибла его научная репутация! Надо же аккуратно записать доказательство (но это будут многие десятки страниц!) и отложить его на полгода-год, чтобы потом перечитать хладнокровно и придирчиво… Но если за это время кто-нибудь опубликует своё доказательство? Ох, беда…

Всё же Уайлз придумал двойной способ быстрой проверки своего доказательства. Во-первых, нужно довериться одному из надёжных друзей-коллег и рассказать ему весь ход рассуждений. Со стороны все ошибки видней! Во-вторых, надо прочитать спецкурс на эту тему смышлёным студентам и аспирантам: уж эти умники не пропустят ни одной ошибки лектора! Только надо не сообщать им конечную цель курса до последнего момента - иначе об этом узнает весь мир! И конечно, искать такую аудиторию надо подальше от Кембриджа - лучше даже не в Англии, а в Америке… Что может быть лучше далёкого Принстона?

Туда и направился Уайлз весной 1993 года. Его терпеливый друг Никлас Кац, выслушав долгий доклад Уайлза, обнаружил в нём ряд пробелов, но все они оказались легко исправимы. Зато принстонские аспиранты вскоре разбежались со спецкурса Уайлза, не желая следовать за прихотливой мыслью лектора, который ведёт их неведомо куда. После такой (не особенно глубокой) проверки своей работы Уайлз решил, что пора явить великое чудо свету.

В июне 1993 года в Кембридже проходила очередная конференция, посвящённая «теории Ивасава» - популярному разделу теории чисел. Уайлз решил рассказать на ней своё доказательство гипотезы Танияма, не объявляя главный результат до самого конца. Доклад шёл долго, но успешно, постепенно начали стекаться журналисты, которые что-то почуяли. Наконец, грянул гром: теорема Ферма доказана! Общее ликование не было омрачено какими-либо сомнениями: кажется, всё чисто… Но через два месяца Кац, прочтя окончательный текст Уайлза, заметил в нём ещё одну брешь. Некий переход в рассуждениях опирался на «систему Эйлера» - но то, что построил Уайлз, такой системой не являлось!

Уайлз проверил узкое место и понял, что тут он ошибся. Хуже того: непонятно, чем заменить ошибочное рассуждение! После этого в жизни Уайлза наступили самые мрачные месяцы. Прежде он вольно синтезировал небывалое доказательство из подручного материала. Теперь он привязан к узкой и чёткой задаче - без уверенности, что она имеет решение и что он сумеет его найти в обозримый срок. Недавно Фрей не устоял в такой же борьбе - и вот его имя заслонилось именем удачливого Рибета, хотя догадка Фрея оказалась верна. А что будет с МОЕЙ догадкой и с МОИМ именем?

Эта каторжная работа тянулась ровно год. В сентябре 1994 года Уайлз был готов признать своё поражение и оставить гипотезу Танияма более удачливым преемникам. Приняв такое решение, он начал медленно перечитывать своё доказательство - с начала до конца, вслушиваясь в ритм рассуждений, вновь переживая удовольствие от удачных находок. Дойдя до «проклятого» места, Уайлз, однако, не услышал мысленно фальшивой ноты. Неужели ход его рассуждений был всё-таки безупречен, а ошибка возникла лишь при СЛОВЕСНОМ описании мысленного образа? Если тут нет «системы Эйлера», то что тут скрыто?

Неожиданно пришла простая мысль: «система Эйлера» не работает там, где применима теория Ивасава. Почему бы не применить эту теорию напрямую - благо, самому Уайлзу она близка и привычна? И почему он не испробовал этот подход с самого начала, а увлёкся чужим видением проблемы? Вспомнить эти детали Уайлз уже не мог - да и ни к чему это стало. Он провёл необходимое рассуждение в рамках теории Ивасава, и всё получилось за полчаса! Так - с опозданием в один год - была закрыта последняя брешь в доказательстве гипотезы Танияма. Итоговый текст был отдан на растерзание группе рецензентов известнейшего математического журнала, годом позже они заявили, что теперь ошибок нет. Таким образом, в 1995 году последняя гипотеза Ферма скончалась на трёхсотшестидесятом году своей жизни, превратившись в доказанную теорему, которая неизбежно войдёт в учебники теории чисел.

Подводя итог трёхвековой возне вокруг теоремы Ферма, приходится сделать странный вывод: этой геройской эпопеи могло и не быть! Действительно, теорема Пифагора выражает простую и важную связь между наглядными природным объектами - длинами отрезков. Но нельзя сказать то же самое о теореме Ферма. Она выглядит скорее как культурная надстройка на научном субстрате - вроде достижения Северного полюса Земли или полёта на Луну. Вспомним, что оба эти подвига были воспеты литераторами задолго до их свершения - ещё в античную эпоху, после появления «Начал» Евклида, но до появления «Арифметики» Диофанта. Значит, тогда возникла общественная потребность в интеллектуальных подвигах этого сорта - хотя бы воображаемых! Прежде эллинам хватало поэм Гомера, как за сто лет до Ферма французам хватало религиозных увлечений. Но вот религиозные страсти схлынули - и рядом с ними встала наука.

В России такие процессы начались полтораста лет назад, когда Тургенев поставил Евгения Базарова в один ряд с Евгением Онегиным. Правда, литератор Тургенев плохо понимал мотивы действий учёного Базарова и не решился их воспеть, но это вскоре сделали учёный Иван Сеченов и просвещённый журналист Жюль Верн. Стихийная научно-техническая революция нуждается в культурной оболочке, чтобы проникнуть в умы большинства людей, и вот появляется сперва научная фантастика, а за нею научно-популярная литература (включая журнал «Знание - сила»).

При этом конкретная научная тема совсем не важна для широкой публики и не очень важна даже для героев-исполнителей. Так, услыхав о достижении Северного полюса Пири и Куком, Амундсен мгновенно изменил цель своей уже подготовленной экспедиции - и вскоре достиг Южного полюса, опередив Скотта на один месяц. Позднее успешный полёт Юрия Гагарина вокруг Земли вынудил президента Кеннеди сменить прежнюю цель американской космической программы на более дорогую, но гораздо более впечатляющую: высадку людей на Луне.

Ещё раньше проницательный Гильберт на наивный вопрос студентов: «Решение какой научной задачи было бы сейчас наиболее полезно»? - ответил шуткой: «Поймать муху на обратной стороне Луны!» На недоумённый вопрос: «А зачем это нужно?» - последовал чёткий ответ: «ЭТО никому не нужно! Но подумайте о тех научных методах и технических средствах, которые нам придётся развить для решения такой проблемы - и какое множество иных красивых задач мы решим попутно!»

Именно так получилось с теоремой Ферма. Эйлер вполне мог её не заметить.

В таком случае кумиром математиков стала бы какая-нибудь другая задача - возможно, также из теории чисел. Например, проблема Эратосфена: конечно или бесконечно множество простых чисел-близнецов (таких, как 11 и 13, 17 и 19 и так далее)? Или проблема Эйлера: всякое ли чётное число является суммой двух простых чисел? Или: есть ли алгебраическое соотношение между числами π и e? Эти три проблемы до сих пор не решены, хотя в ХХ веке математики заметно приблизились к пониманию их сути. Но этот век породил и много новых, не менее интересных задач, особенно на стыках математики с физикой и другими ветвями естествознания.

Ещё в 1900 году Гильберт выделил одну из них: создать полную систему аксиом математической физики! Сто лет спустя эта проблема далека от решения - хотя бы потому, что арсенал математических средств физики неуклонно растёт, и не все они имеют строгое обоснование. Но после 1970 года теоретическая физика разделилась на две ветви. Одна (классическая) со времён Ньютона занимается моделированием и прогнозированием УСТОЙЧИВЫХ процессов, другая (новорождённая) пытается формализовать взаимодействие НЕУСТОЙЧИВЫХ процессов и пути управления ими. Ясно, что эти две ветви физики надо аксиоматизировать порознь.

С первой из них, вероятно, удастся справиться лет за двадцать или пятьдесят…

А чего не хватает второй ветви физики - той, которая ведает всяческой эволюцией (включая диковинные фракталы и странные аттракторы, экологию биоценозов и теорию пассионарности Гумилёва)? Это мы вряд ли скоро поймём. Но поклонение учёных новому кумиру уже стало массовым явлением. Вероятно, здесь развернётся эпопея, сравнимая с трёхвековой биографией теоремы Ферма. Так на стыках разных наук рождаются всё новые кумиры - подобные религиозным, но более сложные и динамичные…

Видимо, не может человек оставаться человеком, не свергая время от времени прежних кумиров и не сотворяя новых - в муках и с радостью! Пьеру Ферма повезло оказаться в роковой момент вблизи от горячей точки рождения нового кумира - и он сумел оставить на новорождённом отпечаток своей личности. Можно позавидовать такой судьбе, и не грех ей подражать.

Сергей Смирнов
«Знание-сила»

Новое на сайте

>

Самое популярное